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Abstract

An alternative, exact construction is given, both in geometrical form and in terms of co-ordinate geometry suitable for

computation, for the problem of linking two known points of given dips on a single surface by two circular arcs, mutually
tangent at their point of contact and tangent to the surface at the given points. The problem was originally analysed by Busk in
1929. 7 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

The `Busk construction' (Busk, 1929, pp. 26±28; it
is, in fact, one of many described by him) is referred
to, if not wholly uncritically (see e.g. Suppe, 1985), in
many textbooks of structural geology. It describes the

construction, given limited dip information, of the pro-
®le of a folded bedding surface as a series of circular
arcs, and assumes cylindrical folding to extrapolate
between surfaces.

Two occurrences of the same surface cannot, in gen-
eral, be linked by a single circular arc, but they can by
two arcs which have a common tangent plane at their
intersection. In fact, as Busk realised, a range of such
solutions is possible. He o�ered two graphical sol-

utions, one approximate (repeated by Wojtal, 1988)
and one accurate (repeated by Higgins, 1962), for con-
structing the arcs. The purpose of this note is to pre-
sent an accurate graphical solution alternative to that
of Busk, and to explore more fully than he did the

range of possible solutions.

It transpires that the points of common tangency of
the two arcs lie on yet another circular arc, and the
range of possible two-arc solutions is bounded by the

two single arcs which are respectively tangent to bed-
ding at one of the points and passing through the
other. As limiting cases of two-arc solutions, these can

be thought of as combining an arc of ®nite radius and
an arc of zero radius, the latter to accommodate the
angular divergence between the arc and bedding at the
second point. The range of possible solutions is a func-
tion of the relative positions of the two points and the
dips at the points: see Fig. 1 for examples. As usual,
unambiguous interpretations require close control. The
two arcs may turn in the same sense or in opposite
senses; where, as in Fig. 1(a), both possibilities occur
together, the two classes of solution are separated by
the special case in which one arc becomes a straight
line (cf. Higgins, 1962).

In a geometrical sense, the construction described
here is less pure than that of Busk, in that it requires
the use of a protractor as well as, rather than only,
ruler and compasses. The construction, however, is
straightforward, and lends itself readily to computed
plotting.

2. Graphical construction

The required surface is known at the two points A
and B (Fig. 2a), at which the dips are, respectively, d1
and d 02: Since a number of di�erent bedding dip combi-
nations arise it is necessary to de®ne a consistent angu-
lar convention. Bedding dips at A and B are taken as
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positive if the bed is right-way-up and dips down to
the right. In geometrical arguments it is sometimes
easier to work with angles that, on this convention,
are negative: these are denoted by dashes, e.g. d 02 �
ÿd2:

First map the locus of the point of common tan-
gency. Then, for a chosen point on this locus, the two
arcs can be constructed:

1. To construct the arc which is the locus of the point
of common tangency, draw a line through A at an
angle to AB of:

s � �d1 ÿ d2�=2ÿ 90 �1�
where s is measured positive clockwise from AB
(and is negative for the case of Fig. 2a). Extend it
as required to cut the perpendicular bisector of AB
at K, the arc centre; the arc radius is KA: see
Fig. 2(a).

2. To construct a possible two-arc solution, select a
point O on the previous arc. Draw the common tan-
gent at O: although the point O lies on a circular
arc, the common tangent sought is not tangent to
this arc. Rather, the tangent makes an angle with
OA, labelled a in Fig. 2(b), which is equal to the
angle between the bedding at A and the line OA;
the two angles form the base angles of the isosceles
triangle AMO. (One could, equivalently, work from

the point B using the angles labelled b 0 in Fig. 2b.)
Draw perpendiculars to the bedding at A and B,
and to the common tangent, i.e. bedding, at O. The
arc centres P, for arc OA, and Q, for arc OB, are
found as the intersections of perpendiculars to bed-
ding at A and O, O and B respectively; radii are
AP, BQ: see Fig. 2(b).

3. Concentric bedding horizons can be stepped o� by
drawing arcs on P, Q as centres and increasing or
decreasing the radii by the required bed thicknesses
(Fig. 2c).

4. It is not necessary, but may be of interest, to con-
struct the limiting cases which form the envelope to
the set of two-arc constructions. These are given by
the pair of arcs which are respectively tangential to
bedding at one point and pass through the other.
The arc centres are found by the intersections, R
and S, of the bedding normals at A and B with the
perpendicular bisector of AB; radii are AR and BS:
see Fig. 2(d).

3. Proof

3.1. Construction of the two arcs

Cases arise where the two arcs have the same, and
opposite, senses of turn: they are illustrated in Fig. 3(a)
and (b). The two diagrams are labelled comparably.
The chords AO and OB subtended by the two arcs
make angles a and b, measured positive clockwise
from the chords, with respect to the bedding at A and
B. The proof may be followed on either Fig. 3(a) or
(b).

At two points, A and B, the dips, d1 and d2, are
known. Lines at angles a from the bedding at A and,
likewise, b from B meet at O, which is the point at
which the two required arcs meet. The line MN is
drawn through O to de®ne two isosceles triangles
AMO and BNO. MN is parallel to the bedding at O
and thus the intersections of the perpendicular to MN
through O with the perpendiculars to bedding at A
and B de®ne two isosceles triangles, OAP and OBQ.
Thus P and Q are the centres of two arcs, of radii OP
and OQ, which are mutually tangent at O.

The angles marked a, b 0, 2a and 2b 0 may readily be
established. If the lines parallel to bedding at A and B
are projected to meet at X, it is clear that:

2a� 2b 0 � d1 � d 02, �2�
or:

2�aÿ b� � d1 ÿ d2: �3�

Fig. 1. Examples of the Busk construction linking two points, A and

B, of given dips, on a single surface, by two mutually tangential

arcs. In (a) the two arcs have (predominantly) the same senses of

turn; in (b) they are opposed. The dotted arcs de®ne the envelope of

all possible solutions. The dashed arc is the locus of the point of

contact, or point of common tangency, of the two constructed arcs.

Points marked 1±4 are points of contact for four alternative sol-

utions.
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Fig. 2. (a) Construction of the locus of the point of common tangency, where the two arcs join. (b) Construction of MN, the common tangent at

O, and determination of the arc centres, P and Q, and arc radii, AP and QB. (c) Bed construction. (d) Construction for limiting cases.

This equation establishes the link between a and b,
through the bedding dips. It could, if required, be used
to construct the arcs directly (i.e. without, as above,
®rst constructing the arc of common tangency): the
point O lies at the intersection of lines drawn at a
from A and b (found from Eq. 3) from B.

3.2. Arc of common tangency

A circle can always be ®tted to three points. So A,
O, B lie on a circle, centre K: see Fig. 4. (Fig. 4 repeats
the base data of Fig. 3a). We need a means of locating
K.

Since the triangles AKO and BKO are both iso-
sceles:

A ÃOK � �180ÿ A ÃKO�=2, �4�

B ÃOK � �180ÿ B ÃKO�=2: �5�
Summing:

A ÃOB � 180ÿ A ÃKB=2: �6�
But, since MON is a straight line:

A ÃOB� a� b 0 � 180, �7�
so:

A ÃKB � 2�a� b 0 � �8�
or:

A ÃKB � d1 � d 02 � d1 ÿ d2 �9�
(from Eqs. (2) and (3)).

Since the triangle AKB is also isosceles:

s 0 � �180ÿ A ÃKB�=2 �10�

s � �d1 ÿ d2�=2ÿ 90: �11�
Since A and B are ®xed points, the position of K is

also ®xed and independent of a: Thus, as a varies, the
locus of O traces out a circular arc, centre K.

4. Computable relationships

It is useful, particularly if the construction is to be
programmed, to establish the key values in terms of
co-ordinate geometry. De®ne an axis frame with x
increasing to the right, z increasing down. The points
A and B are, respectively, �x1,z1� and �x2,z2�; the angle
a is taken as the parameter de®ning the required point
of common tangency, O, and b is available from Eq.
(3).
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The co-ordinates of O are:

x0 � �z2 ÿ z1 ÿ x2 tan �d2 ÿ b� � x1 tan �d1 ÿ a��=

�tan �d1 ÿ a� ÿ tan �d2 ÿ b��
�12�

z0 � z1 � �x0 ÿ x1� tan �d1 ÿ a� �13�

Eq. (13), which de®nes O with respect to A, is matched
by:

z0 � z2 � �x0 ÿ x2� tan �d2 ÿ b�, �14�
which de®nes O with respect to B. Eq. (12) eliminates
z0 between Eq. (13) and Eq. (14).) The variable b may
be eliminated from Eq. (12) by using Eq. (3), to give
an equation dependent on a only.

For further computation it is convenient to rede®ne
the problem in an axis frame �x 0,z 0 � with origin at O
and in which the common tangent MON is horizontal
(i.e. the axis frame is rotated through �d1 ÿ 2a�: see
Fig. 3). The normal at O then becomes the z 0 axis, and
the x 0 co-ordinates of the arc centres, P and Q, are
both zero. The z 0 co-ordinate of P (which also de®nes
the radius AP) is:

z 0P � �x 0 21 � z 0 21 �=�2z 01�: �15�
(This can be established by applying the sine rule to

the triangle AOP.) A similar relationship, in terms of
x 02,z

0
2, de®nes z

0
Q for Q.

The centre of the circular arc which is the locus of
O, the point of common tangency, is:

z 0K � �x 02 ÿ x 01 ÿ z 02 cot 2b� z 01 cot 2a�=�tan b

ÿ tan a�; �16�

x 0K � x 01 ÿ z 01 cot 2aÿ z 0K tan a: �17�
[Eq. (17) expresses the fact (see Fig. 4) that K lies

on a line through M (for which x 0M� x 01ÿ z 01cot 2a� at
an angle of ÿ�90ÿ a� to MON, i.e. the x 0 axis. A simi-
lar equation follows since K lies on a line through N
at an angle of 2b: Eq. (16) arises by eliminating x 0K
between the two equations.] Again, Eq. (3) may be
used to eliminate b from Eq. (16). The radius of the
circular arc is clearly:

rK � ��x 01 ÿ x 0K� 2 � �z 01 ÿ z 0K� 2�1=2: �18�
The limiting values of a, which de®ne the range of

possible solutions, are:

a � d1 ÿ g, �d1 � d2�=2ÿ g, �19�
where g is the angle of dip of the line AB. (The ®rst
limit corresponds to the line tangential to the bedding
at A; the second to the line tangential to the bedding
at B, so that b � d2 ÿ g, which is recast in terms of a
using Eq. (3).
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